
International Journal of Solids and Structures 41 (2004) 1235–1248

www.elsevier.com/locate/ijsolstr
Rank-three laminates are good approximants of the optimal
microstructures for the diffusion problem in dimension two

Sergio Guti�errez *

Departamento de Matem�atica, Pontificia Universidad Cat�olica de Chile, Casilla 306, Correo 22, Santiago, Chile

Received 7 October 2003; received in revised form 7 October 2003
Abstract

In two dimensions there are optimal bounds for the effective conductivity of arbitrary mixtures of two heat con-

ducting materials: one isotropic and the other anisotropic; used in fixed volume fractions and allowing for rotations.

Some of those bounds involve a rank-two lamination, but others involve a microstructure of coated disks. We create a

region of laminates of rank at most three, which gives a very good approximation of the optimal bound if the starting

material has a moderate degree of anisotropy. We also study the stability under homogenization of this region, meaning

that whenever one homogenizes a mixture of two materials belonging to it, the effective diffusion tensor also belongs

to this region. This is done to show that the region we create cannot be easily enlarged.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The role of the microstructure in determining the macroscopic, or effective, behavior of a composite
material is by now a well-known feature. Some important advances have been obtained lately in getting a

full solution to the problem of characterizing the set Gh of the diffusion tensors that can be constructed

through arbitrary mixtures of two heat conducting materials or phases: one isotropic and the other

anisotropic; when they are used in fixed volume fractions: h for one of them and 1� h for the other, and

allowing for rotations.

Once an optimal bound has been found, if the microstructure that saturates the bound is not simple, it

arises the question of how far from optimal are simple microgeometries, like low-rank laminates. This is the

problem studied here in three aspects: creating a particular set of laminates of rank at most three that will
be close to Gh, studying the stability of such set under homogenization and finally quantifying the difference

between that set and Gh, or a good candidate for it.
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The Theory of Homogenization deals with computing the macroscopic behavior of a material that is

inhomogeneous at a much smaller scale. This scale, however, cannot be too small since the phenomenon is

always described by the equations of continuous media. On its deterministic variant it considers a fixed

microstructure, for example a periodic array, and it tries to determine whether the behavior of the material
becomes in average similar to that of a homogeneous material at scales larger and larger. The subtle point is

to give a precise meaning to this average behavior: for a problem of steady-state heat conduction one

requires that the temperature fields and also the heat fluxes become closer and closer to those of the

homogeneous material; for elastostatics one requires that the deformation and the strain and stress tensors

become progressively closer to those of the homogeneous material. But now the question is to make precise

the meaning of this closeness. Since we want the macroscopic behavior of the samples of material to be very

similar, we consider macroscopic measurements of the quantities we require to be similar. However a

macroscopic measurement necessarily involves taking some kind of average at a smaller length scale and
this averaging technique has to be sufficiently robust because we will be averaging quantities that tend to

vary very fast, since we will use larger and larger length scales. The answer to this crucial point is the notion

of weak convergence, which came mostly in the past century, from the work of many scientists: mathe-

maticians, physicists and engineers.

Let us now be more precise and recall the mathematical definition of H -convergence of Murat and

Tartar, in the context of steady-state diffusion of heat, see for example Murat and Tartar (1983), and which

is based on weak convergence. Even though we do not use it explicitly in the following work, it will always

be on the background. It is similar to G-convergence, introduced by Spagnolo with a different purpose,
except that H -convergence does not require the tensors involved to be symmetric, which is of no conse-

quence here, since diffusion tensors are always symmetric. Let X be a regular open subset of R2 and fAng be

a sequence of diffusion tensors. Then we say that An H -converges to Aeff if for all f 2 H�1ðXÞ we have a

subsequence of fung � H 1
0 ðXÞ, solutions to
�divðAn gradunÞ ¼ f in X
un ¼ 0 on oX;

�

which satisfies that un ! u1 weakly in H 1

0 ðXÞ and An gradun ! Aeff gradu1 weakly in L2ðX;R2Þ, where u1 is

the solution to
�divðAeff gradu1Þ ¼ f in X
u1 ¼ 0 on oX:

�

The meaning of this somewhat involved definition is that for any heat source f , the behavior of the Ans

becomes more and more similar to that of Aeff in terms of the weak limits of both: the induced temperature

field un and the induced heat flux An gradun. In the context of finding Gh, the A
ns are discontinuous diffusion

tensor-fields that take only two values, namely those corresponding to the two materials we are mixing, and

for each microstructure we have a different way in which An varies in space.

The problem of finding Gh is sometimes referred to as the Gh-closure problem, as a variation of the G-
closure problem. The question of characterizing Gh, or variations of it, has been extensively studied in the
last three decades. Some of the classical references are: Tartar (1977, 1985), Murat and Tartar (1983),

Cherkaev and Lurie (1984a), Francfort and Murat (1987) and Milton and Nesi (1999). For a recent account

on the state of the art in this subject (see Allaire, 2002). The situation when both starting materials are

isotropic was completely solved in Murat and Tartar (1983), Tartar (1985), Cherkaev and Lurie (1984a,b).

If one of the starting materials is allowed to be anisotropic, in Nesi (1993) an optimal bound was obtained

for anisotropic composites on the side of the region closer to the isotropic phase, but to show the

attainability of the bound a constraint on h has to be imposed. Later in Nesi (1996) an optimal bound was

proved on the other side of the region, but only for isotropic composites. Finally on case II as defined
below, in Milton and Nesi (1999) the full characterization of Gh was obtained, still under the same con-
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straint on h mentioned before. For case I there is only a corresponding conjecture coming from Astala and

Miettinen (1998). We recall these results in Section 2.

We will have mixtures of two phases: material a with diffusion tensor A is used in volume fraction h,
h 2 ð0; 1Þ; the other is material b with diffusion tensor B. We divide the study in two cases:

Case I. A ¼ aI , B ¼ diagðb; cÞ and a2 < bc.
Case II. A ¼ diagða; bÞ, B ¼ cI and ab < c2.

In Section 3 we make the explicit construction of a region of laminates of rank at most three, denoted by

Lh, and show at least in some cases that this region is H -stable, meaning that whenever we homogenize a

mixture of two materials belonging to this region, the resulting effective tensor also belongs to the same

region. This means that despite the simplicity of the microstructures used to generate the tensors in Lh,
they can reproduce almost all the possible effective tensors, as it will be numerically shown in the last

section, and it also means that to get an even better approximation, most likely one needs to use a com-

plicated microgeometry. First in Section 3.1 we recall a result from Francfort and Murat (1987), quoted

below as Theorem 3.1, which gives sufficient conditions for a set of tensors to be H -stable. This theorem

requires two main hypothesis, on the one hand that the boundary be C1, this is that the boundary is formed

by functions that are differentiable with the derivative being continuous, and on the other hand that the

region be enclosed between a convex and a concave function. We then extend that result to get Proposition

3.4 by relaxing the former hypothesis to cover the case of the explicit construction we present in Section 3.2,
this is of a curve of rank-two laminates almost enclosing a region whose interior and a small piece of its

boundary are obtained by one more lamination. Then in case I and if we further restrict ourselves to the

well-ordered case (see Francfort and Murat, 1987), i.e. we also require that a be less than both b and c, we
can prove using Proposition 3.4 that Lh is H -stable. For the non-well-ordered case we could not do such

general verification, instead we checked numerically that the second derivatives of the bounding functions

do have the right signs, to do it we discretize the values taken by h over the whole interval ð0; 1Þ, fix a ¼ 1

and c ¼ 5 and discretize b over the interval ð0:2; 5Þ. We present the analogous construction for case II in

Section 3.3 and again checked numerically the sign of the derivatives, the only difference being that now b
will be discretized over the interval ð1; 25Þ. Therefore there is very strong evidence that Lh is always

H -stable.

Finally in Section 4 and for the same discretizations mentioned above, we compute the difference be-

tween the optimal bound and the conductivity of the closest isotropic conductor belonging to Lh, on the

side of the region closer to the anisotropic phase. Restricting the ratio between the conductivities of the

anisotropic phase to be at most 25, we obtain that rank-three laminates will yield a composite with an

effective conductivity very close to the optimal value, the maximum difference being of about 2%, gain

which most probably will be offset by the cost of having to use a much more complicated assembling
procedure. On the other side of the region there is no gap if the volume constraint imposed by either

Theorem 2.1 or 2.2 is met.

Throughout the paper we denote by ei the ith canonical vector and say that the lamination is in the

direction of f 2 R2, f 6¼ 0, if the interfaces between the laminates are perpendicular to f.
2. Optimal bounds

Here we recall the known optimal bounds and one conjecture for it. First we present the results using

quasiconformal mappings obtained in Astala and Miettinen (1998) and Milton and Nesi (1999), which to

show the attainability of the bounds, uses a microstructure following the construction of Hashin-Shtrikman
and Schulgasser, since it involves constructing disks of different sizes that always have one eigenvector of
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the anisotropic phase pointing towards the center of the disk. The other optimal bound, to be recalled

secondly, comes from a simple rank-two laminate and was obtained in Nesi (1993).

Following Nesi (1993) let us define the following quantities, which give the values of the two conduc-

tivities of a rank-one laminate between the phases in the prescribed volume fractions for each of the cases.
In case I if the laminate is in the e1 direction
hI1ðhÞ ¼
h
a

�
þ 1� h

b

��1

and aI2ðhÞ ¼ ha þ ð1� hÞc;
and if the laminate is in the e2 direction
hI2ðhÞ ¼
h
a

�
þ 1� h

c

��1

and aI1ðhÞ ¼ ha þ ð1� hÞb:
In case II if the laminate is in the e1 direction
hII1 ðhÞ ¼
h
a

�
þ 1� h

c

��1

and aII2 ðhÞ ¼ hb þ ð1� hÞc;
and for the e2 direction
hII2 ðhÞ ¼
h
b

�
þ 1� h

c

��1

and aII1 ðhÞ ¼ ha þ ð1� hÞc:
In case I Gh is not known, instead we have a region eGh enclosed by two curves, one presented in (2.2) is

only conjectured to be a bound while the other, coming from (2.3), is a bound which is fully attained

provided that aI1 P hI2, which imposes a lower bound for h.
In case II Gh is enclosed by two curves, one presented in (2.1) and the other coming from (2.4), which

is fully attained under the assumption that aII1 P hII2 , which now translates into an upper bound for h.

2.1. Using quasiconformal mappings

Nesi (1996) introduced the idea of using quasiconformal mappings and obtained optimal bounds, either
from above or from below, depending on the case, but only for isotropic composites belonging to Gh. Case I

is covered by Theorem 5.3 in Nesi (1996), while case II is covered by Theorem 5.2 in that paper. Then in

Astala and Miettinen (1998), the authors conjectured optimal bounds working on the side of Gh closer to

the anisotropic phase, one for each of the situations studied by Nesi. Lately in Milton and Nesi (1999) the

conjecture of Astala and Miettinen covering case II was proved, which we now recall. From (4.1) and (4.2)

in Milton and Nesi (1999) written in our notation, let be:
d1 ¼
ffiffiffiffiffiffi
ab

p
; K ¼

ffiffiffi
b
a

r
; A ¼ d1 � c

d1 þ c
and
SðtÞ ¼ �d1 þ
2d1

1þ AtK
8t 2 ½0; 1�;
where t represents the volume fraction of material b. The material with diffusion tensor SðtÞI is obtained by

filling the domain with disks of varying sizes and which are constructed following the Hashin-Shtrikman–

Schulgasser idea, namely with a core of the isotropic phase and an annulus of the anisotropic phase with the

less conducting direction always pointing to the center of the disk. Sð1� hÞ gives an optimal lower bound
for the conductivity of the isotropic materials belonging to Gh (see Theorem 4.2 in Milton and Nesi, 1999).
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Then using an isotropic material constructed in this way and relaminating it with the anisotropic phase,

in the direction of e1, they got (see Proposition 5.2 in Milton and Nesi, 1999) an optimal lower bound given

by the curve of materials with conductivities
k1 ¼
n1

Sðn2Þ

�
þ 1� n1

a

��1

and k2 ¼ n1Sðn2Þ þ ð1� n1Þb; ð2:1Þ
where n1; n2 2 ½0; 1� and n1n2 ¼ 1� h.
The other conjecture of Astala and Miettinen has not been proved, to the best of our knowledge. The

curve coming from this conjecture together with the curve coming from the optimal bound proved in

Theorem 2.1, enclosed a region that we denote by eGh. From formula (5.4) in Astala and Miettinen (1998),

written in our notation, we set:
d ¼
ffiffiffiffiffi
bc

p
; K ¼

ffiffiffi
c
b

r
A ¼ dða � dÞ

a þ d
and
SðtÞ ¼ 2

d þ AtK

�
� 1

d

��1

8t 2 ½0; 1�;
where t represents now the volume fraction of material a. Then, repeating the process as before, one gets a

curve of materials with conductivities
k1 ¼
n1

Sðn2Þ

�
þ 1� n1

b

��1

and k2 ¼ n1Sðn2Þ þ ð1� n1Þc; ð2:2Þ
where n1; n2 2 ½0; 1� and n1n2 ¼ h, which would give the optimal upper bound.

2.2. Optimal rank-two laminates

In Nesi (1993), among many other results, two optimal bounds were proved concerning the Gh-closure of

any pair of materials, one isotropic and the other anisotropic, in any dimension greater than or equal to two

(see Section 7.3 in Nesi, 1993).

Theorem 2.1. Let a; b; c 2 Rþ be such that a2 < bc and h 2 ð0; 1Þ. Let then be material a with diffusion tensor

A ¼ aI and material b with diffusion tensor B ¼ diagðb; cÞ. Then if k1 and k2 are the main conductivities of

a homogeneous material created by mixing material a in proportion h and material b or rotations of it in

proportion 1� h, we have that
a
k1 � a

þ a
k2 � a

6
S1

1� S1
¼ 1

1� h
h

�
þ a

b � a
þ a

c � a

�
; ð2:3Þ
where
S1 ¼ h þ ð1� hÞ aðb þ cÞ � 2a2

bc � a2
:

Furthermore the bound (2.3) is attained by rank-two laminates and under the assumption that aI1 P hI2, which

means that h 2 ½hI
min; 1Þ, where
hI
min ¼

aðc � bÞ
ðb � aÞðc � aÞ ;
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the whole curve in the box ½hI1; aI2� � ½hI1; aI2� on the ðk1; k2Þ-plane given by equality in (2.3) is realized by rank-

two laminates.

Theorem 2.2. Let a; b; c 2 Rþ be such that ab < c2 and h 2 ð0; 1Þ. Let then be material a with diffusion tensor

A ¼ diagða; bÞ and material b with diffusion tensor B ¼ cI . Then if k1 and k2 are the main conductivities of

a homogeneous material created by mixing material a or rotations of it in proportion h and material b in

proportion 1� h, we have that
k1

c � k1

þ k2

c � k2

6
S2

1� S2
¼ �1þ 1

h
1

�
þ a

c � a
þ b

c � b

�
; ð2:4Þ
where now
S2 ¼ h
cða þ bÞ � 2ab

c2 � ab
þ 1� h:
Furthermore the bound (2.4) is attained by rank-two laminates and under the assumption that aII1 P hII2 , which

means that h 2 ð0; hII
max�, where
hII
max ¼ 1� cðb � aÞ

ðc � aÞðc � bÞ ;
the whole curve in the box ½hII1 ; aII2 � � ½hII1 ; aII2 � on the ðk1; k2Þ-plane given by equality in (2.4) is realized by rank-

two laminates.

In both cases the optimal microstructure is produced through an iterated lamination with the isotropic

phase, first one laminates the anisotropic material with the isotropic phase in the direction of e1 and then

laminates the outcome of this with the isotropic phase, but now in the direction of e2. We have recently

found and alternative proof of these bounds, using only the Homogenization method as presented in Tartar

(2000) (see Guti�errez, in press).
3. H-stability

As we said in the Introduction, in Francfort and Murat (1987) was defined the concept of H -stability. In

that article this idea was used to fully characterize the set of all possible mixtures of two anisotropic

materials, but without fixing the proportions. We would like to use this idea to show that a region we can

create by doing only laminates of rank at most three, is H -stable. We only succeeded in case I under the

extra assumption that the tensors are well-ordered, which implies that a < b6 c. For the other situations,

we only verified the conditions numerically.

3.1. A characterization of H -stable regions

The following theorem was proved in Francfort and Murat (1987) and gives sufficient conditions to

make a set of tensors to be H -stable. One of the conditions of the theorem is too strong and it will not be

satisfied by our region, however it will not be hard to make the appropriate extension.

Theorem 3.1. Let d1 and d2 be strictly positive real numbers such that
a2
0 6 d1 6 d2 6 b2

0:
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Let u and w be two real-valued functions defined on ½d1; d2� with the following properties:
u and w are C1 functions with values in R�
þ;

u is concave;
w is convex;
uðdÞwðdÞ ¼ d for any d 2 ½d1; d2�:

8>><>>:

Define Kðd1; d2;u;wÞ as the set of all ðk1; k2Þ 2 ½a0; b0�

2
such that d1 6 k1k2 6 d2 and wðk1k2Þ6 k1,

k2 6uðk1k2Þ. Then the set of diffusion tensors that have their eigenvalues belonging to Kðd1; d2;u;wÞ, denoted

by MðKðd1; d2;u;wÞÞ, is H -stable.

For the region K we construct, one part of its boundary comes from the optimal bound derived either in

Theorem 2.1 or 2.2. The other part comes from an explicit rank-two lamination. The problem we run into is

that the corresponding functions u and w will not be differentiable at the point where both parts of the

boundary meet, therefore we want to relax the C1 requirement in Theorem 3.1, which is heavily used in its

proof. To do it we use the following two lemmas:

Lemma 3.2. The increasing union of sets which are H -stable is H -stable.

Proof. If A0 and B0 belong to the union, then both belong to one of the sets in the union, so all the tensors

produced by homogenizing mixtures using only those tensors also belong to that set and therefore to the

union. �

Lemma 3.3. Let K � R2
þ be a bounded set on the ðd; kÞ-plane, such that MðKÞ is H -stable, then if K denotes

the closure of K, the set MðKÞ is also H -stable.

Proof. IfMðKÞ were not H -stable, there must exist A0;B0 2 MðKÞ, whose representation on the ðd; kÞ-plane
are, respectively, k and w, with k, w 2 K, and such that we can homogenize a mixture of them to get a tensor

C0 62 MðKÞ. Then calling k� the representation of C0 on ðd; kÞ, we have that k� 62 K.
There are then two sequences of tensors in MðKÞ whose representations on the ðd; kÞ-plane, fkmg and

fwmg, belong to K and which converge in the norm of R2 to k and w, respectively. Let then fCng be the

sequence of tensors mixing A0 and B0 and H -converging to C0. Now for each m, using the same micro-

geometry and rotations of the tensors, we can construct another mixture using now tensors represented by
km and wm, to create a sequence of tensors fBm

n g, which due to sequential compactness of H -convergence,

must have a subsequence which H -converges, let us say to Bm
0 represented by k0m.

Now, for any e > 0 we can choose m large enough to make jBm
n � Cnj6 e pointwise and uniformly on n.

But Proposition 16 of Tartar (2000) gives then that jBm
0 � C0j is bounded by a constant times e, which in

turn implies that the distance between k� and k0m should also be bounded by a constant times e. Then by

selecting e sufficiently small, we conclude that k0m 62 K, which contradicts the H -stability of MðKÞ. �

Proposition 3.4. Let K be as in Theorem 3.1 except that u and w are continuous, but they may not be dif-

ferentiable at a finite number of points in ðd1; d2Þ, where they have only directional derivatives and their one-

sided derivatives at d1 and d2 might not be finite. Then we still have that MðKÞ is H -stable.

Proof. The fourth condition on u and w in Theorem 3.1 implies that the points where the functions are not

smooth are common. Let then T ¼ fdi 2 ðd1; d2Þ : i ¼ 1; . . . ;mg be that set of points, then for e positive but
sufficiently small, we construct a sequence of sets Ke by doing two things: first we regularize u and w on all

the intervals ðdi � e; di þ eÞ, so to make them C1, and secondly, we also need to restrict d 2 ½d1 þ e; d2 � e�,
since both u and w may not be differentiable at the end points. Then now the sets Ke satisfy all the
hypothesis of Theorem 3.1.
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Hence, using Theorem 3.1, we have that all the sets MðKeÞ are H -stable, and Ke � K, then applying

Lemma 3.2 we get that
K 0 ¼ K n fðdi;uðdiÞÞ; ðdi;wðdiÞÞ : i
 

¼ 1; . . . ;mg [
[2
i¼1

ðdi � ½wðdiÞ;uðdiÞ�Þ
!
;

makes MðK 0Þ to be H -stable and then using Lemma 3.3, we conclude that K is such that MðKÞ is

H -stable. h
3.2. Case I

We assume then that A ¼ aI , B ¼ diagðb; cÞ with a2 < bc. The set K will be formed by the union of two

parts: one is obtained from the optimal lower bound (2.3), while the other will come from a precise con-

struction detailed below. Then the first part is given by
k P w1ðdÞ ¼
1

2a
2a2

�
þ ðd � a2ÞS1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2a2 þ ðd � a2ÞS1Þ2 � 4da2

q �

and
k6u1ðdÞ ¼
1

2a
2a2

�
þ ðd � a2ÞS1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2a2 þ ðd � a2ÞS1Þ2 � 4da2

q �
;

with d belonging to the closed interval
I1 ¼
a
S1

ð2
�"

� S1Þ
�2

; hI1ðhÞaI2ðhÞ
#
:

Then on the ðd; kÞ-plane the region is
K1 ¼ ðd; kÞ 2 R2
þ such that d 2 I1 and w1ðdÞ

�
6 k6u1ðdÞ

�
:

First it is clear that u1 and w1 are of class C1 and that u1ðdÞw1ðdÞ ¼ d. Calling
ArðdÞ ¼ ð2a2 þ ðd � a2ÞS1Þ2 � 4da2
we see that
u00
1ðdÞ ¼

1

2a

ffiffiffiffiffi
Ar

p 00
¼ 2ArAr00 � ðAr0Þ2

8aðArÞ3=2
¼ �2a3ðS1 � 1Þ2

ðArÞ3=2
< 0:
Then u00
1ðdÞ < 0, so u1 is concave and w1 is convex. One should notice that this curve is fully attained by

rank-two laminates, more specifically they come from an iterated lamination with the isotropic phase, only

if the restriction h P hI
min is met. If that restriction is not satisfied we close the region on the side of the bad

conductors by doing one more lamination of the material on the curve with the least determinant with its

rotation by p=2, and then we will have only part of the interval I1, but still the same functions of the

determinant, so the respective convexity and concavity will still hold.
The second part of K will come from the following construction: we first laminate A with B in the

direction e1 and using A in proportion g and B in proportion 1� g, to produce an intermediate diffusion
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tensor denoted by M1 and then laminate, in the direction of e2, this tensor with the rotation of B by p=2,
which we denote by ~B, in proportions h=g and 1� h=g, respectively, with g 2 ½h; 1�. Then
M1 ¼
hI1ðgÞ 0

0 aI2ðgÞ

� �

and then
M2ðgÞ ¼

h
g
hI1ðgÞ þ 1� h

g

� �
c 0

0
gbaI2ðgÞ

hb þ ðg � hÞaI2ðgÞ

2664
3775:
We turn now to show that the corresponding functions u2 and w2 are concave and convex, respectively,
verification that will use that a is less than both b and c, i.e. that the tensors are well-ordered. We will show

that there is a value g0 2 ðh; 1Þ where the determinant of M2 is maximized and then only the interval ½g0; 1�
will be used to define Lh. To close the region on the side of the good conductors we laminate M2ðg0Þ with
its rotation by p=2. If the tensors are badly-ordered we did not get an analytical proof that the hypothesis of

Proposition 3.4 are met, instead we computed a simple numerical approximation of the corresponding

second derivatives, and verified that they always have the right sign for h 2 ð0; 1Þ, a ¼ 1, c ¼ 5 and

b 2 ð0:2; 5Þ.
Let us first define the following auxiliary functions of g: AðgÞ ¼ a þ gðb � aÞ and CðgÞ ¼ c � gðc � aÞ,

then we can write that the eigenvalue of M2 associated to e1 is given by
k1 ¼ g1ðgÞ ¼
1

gA
ððg � hÞcAþ habÞ
and analogously
k2 ¼ g2ðgÞ ¼
gbC

hb þ ðg � hÞC ;
both for g 2 ½h; 1�. Then
g01ðgÞ ¼
h

g2A2
ða2ðc � bÞ þ 2agðb � aÞðc � bÞ þ cg2ðb � aÞ2Þ;
which is strictly positive, due to the well-ordering assumption,
g001ðgÞ ¼
�2h
g3A3

ða3ðc � bÞ þ 3a2gðb � aÞðc � bÞ þ 3ag2ðb � aÞ2ðc � bÞ þ cg3ðb � aÞ3Þ;
which is strictly negative, again due to the well-order assumption, and
g02ðgÞ ¼
hb

ðhb þ ðg � hÞCÞ2
ð�cðc � bÞ þ 2gðc � bÞðc � aÞ � g2ðc � aÞ2Þ;
which is also strictly negative for g 2 ½h; 1�.
Let us now call g3ðgÞ ¼ g1ðgÞg2ðgÞ, we then have that d ¼ k1k2 ¼ g3ðgÞ and one can show that
g03ðgÞ ¼ hb2ðbc � a2Þ PðgÞ
QðgÞ ;
where
P ðgÞ ¼ haðc � bÞ þ g2ðcðb � aÞ � aðc � aÞ þ hðb � aÞðc � aÞÞ � 2g3ðb � aÞðc � aÞ
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and
QðgÞ ¼ A2ðhb þ ðg � hÞCÞ2;
which is strictly positive for all g 2 ðh; 1Þ.
Now we see that P has two critical points, one at zero and the other one at
g1 ¼
1

3
h

�
þ cðb � aÞ � aðc � aÞ

ðb � aÞðc � aÞ

�
:

Also we can see that P has only one positive real root, which we denote by g0, and that lies in the interval

½h; 1� since
P ðhÞ ¼ hð1� hÞðaðc � bÞð1þ hÞ þ h2ðc � aÞðb � aÞÞ > 0
and
P ð1Þ ¼ �ð1� hÞðbc þ a2 � 2abÞ < 0:
Looking at the three cases: g1 < 0, g1 ¼ 0 or g1 > 0, we conclude that in all of them and once more using

the well ordering of the original diffusion tensors, we will have that g03ðgÞ < 0 for g 2 ðg0; 1� making then g3
a bijection between ½g0; 1� and ½g3ð1Þ; g3ðg0Þ�.

Additionally, since
g003ðgÞ ¼
hb2ðbc � a2Þ

Q2
ðP 0Q� PQ0Þ;
and P 0ðg0Þ < 0, we have that g003ðg0Þ < 0 and we will show that ðP 0Q� PQ0Þ0 < 0 for all g 2 ðg0; 1Þ, which
then will imply that g003ðgÞ < 0 for all g 2 ðg0; 1Þ, inequality that will be used later on,
ðP 0Q� PQ0Þ0 ¼ P 00Q� PQ00 < 0 () P 00

P
>

Q00

Q
;

but P 00ðgÞ < 0 for g 2 ðg0; 1Þ and

Q00ðgÞ ¼ 2ðcðb � aÞ � aðc � aÞ þ hðb � aÞðc � aÞÞ � 6gðb � aÞðc � aÞ;
which is negative for any g > g1. But one can see that always g1 < g0, then we have for g 2 ðg0; 1Þ that

Q00ðgÞ < 0 and then for g 2 ðg0; 1Þ we get that
P 00

P
> 0 >

Q00

Q
:

Now on the interval ðg0; 1Þ g3 is a one-to-one C1 function and then, by the inverse function theorem, g�1
3

is also C1, therefore we have that g ¼ g�1
3 ðdÞ, hence we now define
k1 ¼ u2ðdÞ ¼ g1ðg�1
3 ðdÞÞ and k2 ¼ w2ðdÞ ¼ g2ðg�1

3 ðdÞÞ:

Then
u0
2ðdÞ ¼ g01ðg�1

3 ðdÞÞ 1

g03ðg�1
3 ðdÞÞ ;
and then, since g01, g
0
2 are never zero, we can define
h1ðdÞ ¼
1

u0
2ðdÞ

¼ g2

��
þ g02

g1
g01

�
� g�1

3

�
ðdÞ;
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analogously we also define
h2ðdÞ ¼
1

w0
2ðdÞ

¼ g1

��
þ g01

g2
g02

�
� g�1

3

�
ðdÞ:
Now, in the context of Theorem 3.1, we set d1 ¼ hI1ðhÞaI2ðhÞ ¼ g3ð1Þ and d2 ¼ g3ðg0Þ. Then the first and

fourth conditions of the Theorem easily hold and we only need to check the second and third conditions.

But
u00
2ðdÞ < 0 () h01ðdÞ > 0 () g03

g01

� �0

< 0 () g003
g03

>
g001
g01

;

which holds since the quantity on the left is positive and the quantity on the right is negative. Then u2 is

concave.
Now
w00
2ðdÞ > 0 () h02ðdÞ < 0 () g03

g02

� �0

> 0 () g001 þ 2
g01g

0
2

g2
<

g01g
00
2

g02
:

But if at some point g2 2 ðg0; 1Þ the condition on the right would not hold, then at that point we would have

that
g002
g001g

2
2 þ 2g01g2g

0
2

6
g02
g01g

2
2

;

but on the other hand from g003ðg2Þ < 0 we conclude, also at g2 that
g002
g001g

2
2 þ 2g01g2g

0
2

>
�1

g1g2
;

then combining these two inequalities, we would have that at g2
g03ðg2Þ > 0;
which is impossible and then w2 is convex. Then we have that
K2 ¼ ðd; kÞ 2 R2
þ : d 2 ½hI1ðhÞaI2ðhÞ; g3ðg0Þ� and w2ðdÞ

�
6 k6u2ðdÞ

�

and then we conclude that K ¼ K1 [ K2 gives Lh ¼ MðKÞ being H -stable, which is accomplished using

Proposition 3.4.

3.3. Case II

Just like in case I, the part of the region coming from the optimal bound using rank-two laminates puts a

restriction on h, but it does not offer any difficulty on the verification of the hypothesis of Proposition 3.4,

since it is obtained from the optimal upper bound (2.4) and is given by
kP w3ðdÞ ¼
1

2c
c2S2

�
þ dð2� S2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2S2 þ dð2� S2ÞÞ2 � 4dc2

q �

and
k6u3ðdÞ ¼
1

2c
c2S2

�
þ dð2� S2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2S2 þ dð2� S2ÞÞ2 � 4dc2

q �
;
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with d belonging to the closed interval
I2 ¼ hII1 ðhÞaII2 ðhÞ;
cS2

2� S2

� �2
" #

:

Then on the ðd; kÞ-plane we call the region
L1 ¼ ðd; kÞ 2 R2
þ such that d 2 I2 and w3ðdÞ

�
6 k6u3ðdÞ

�
:

The attainability of this bounding curve uses the restriction that h6 hII
max, but like in case I if that

restriction is not satisfied, we will have only part of the interval I2, but still the same functions, so the
respective convexity and concavity will still hold.

We now show the way in which the second part of L is obtained: we first laminate A with B in the

direction e1 and using A in proportion g and B in proportion 1� g, to produce an intermediate diffusion

tensor denoted N1 and then we make a laminate of this tensor with the rotation of A by p=2, which
we denote by eA, in the direction of e2 and in proportions 1�h

1�g and
h�g
1�g, respectively, with g 2 ð0; hÞ. Then
N1 ¼
hII1 ðgÞ 0

0 aII2 ðgÞ

� �

and
N2ðgÞ ¼

h � g
1� g

b þ 1� h
1� g

hII1 ðgÞ 0

0
ð1� gÞaaII2 ðgÞ

ð1� hÞa þ ðh � gÞaII2 ðgÞ

2664
3775:
For this part of the boundary curve, like in the case I badly-ordered, we did not get an analytical proof

that it satisfies the hypothesis of Proposition 3.4, so we also turned to a numerical verification, to check that

the relevant second derivatives always have the right sign, which did happen for h 2 ð0; 1Þ, a ¼ 1, c ¼ 5 and

b 2 ð1; 25Þ.
4. Comparing Gh, or eGh, with Lh

When the restriction on the volume fraction imposed by Theorem 2.1 or 2.2, either hP hI
min in case I or

h6 hII
max in case II, is not satisfied, the corresponding bound is most likely non-optimal because, for example

in case I taking h � 0 and b � a, we will have S1 � 1 and then the right hand side of (2.3) goes to infinity,

which will then force an isotropic material saturating the bound, to have conductivity very close to a, which
seems not to be attainable since we will be mixing a very low proportion of the isotropic material aI with a
very high proportion of a material like diagða; cÞ. Besides the worst isotropic conductor in Lh will have

conductivity close to
ffiffiffiffiffi
ac

p
and then the relative difference between this and the isotropic material sitting

on the bounding curve should be like
ffiffiffi
c

p �
ffiffiffi
a

pffiffiffi
a

p ;
which can be made as big as desired, by playing with a or c. Therefore on the side of the region close to the

isotropic phase we either have no gap between Lh and either Gh or eGh, if the constraint on h holds, or in the

opposite case, the gap between them can be very big, most likely due to the non-optimality of the bound.

Therefore to compare the two regions we focus only on the gap on the side of the region closer to the

anisotropic phase. For case I in Fig. 1 we fix a ¼ 1 and c ¼ 5 and make a fine discretization of h and b and
draw the contour plot of the function of these two variables given by the percentage of the conductivity of
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the best isotropic conductor in eGh, represented by the difference between that conductivity and the con-
ductivity of the best isotropic conductor in Lh. For the quantity mentioned before the last, one has an

explicit formula, but for the last one we do not have an explicit formula. The maximum value in this graph

is of 2.07%, which is attained for h ¼ 0:23 and b ¼ 1:69.
For case II in Fig. 2 we present the analogous plot. The maximum value in this graph is of 2.11%, which

is attained for h ¼ 0:75 and b ¼ 3:16.
In both cases we see that the gap is quite small for most combinations of h and b, the gap being of about

2% only for something like 5% of such combinations.
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