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Abstract

In two dimensions there are optimal bounds for the effective conductivity of arbitrary mixtures of two heat con-
ducting materials: one isotropic and the other anisotropic; used in fixed volume fractions and allowing for rotations.
Some of those bounds involve a rank-two lamination, but others involve a microstructure of coated disks. We create a
region of laminates of rank at most three, which gives a very good approximation of the optimal bound if the starting
material has a moderate degree of anisotropy. We also study the stability under homogenization of this region, meaning
that whenever one homogenizes a mixture of two materials belonging to it, the effective diffusion tensor also belongs
to this region. This is done to show that the region we create cannot be easily enlarged.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The role of the microstructure in determining the macroscopic, or effective, behavior of a composite
material is by now a well-known feature. Some important advances have been obtained lately in getting a
full solution to the problem of characterizing the set %, of the diffusion tensors that can be constructed
through arbitrary mixtures of two heat conducting materials or phases: one isotropic and the other
anisotropic; when they are used in fixed volume fractions: 6 for one of them and 1 — 0 for the other, and
allowing for rotations.

Once an optimal bound has been found, if the microstructure that saturates the bound is not simple, it
arises the question of how far from optimal are simple microgeometries, like low-rank laminates. This is the
problem studied here in three aspects: creating a particular set of laminates of rank at most three that will
be close to %, studying the stability of such set under homogenization and finally quantifying the difference
between that set and %, or a good candidate for it.
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The Theory of Homogenization deals with computing the macroscopic behavior of a material that is
inhomogeneous at a much smaller scale. This scale, however, cannot be too small since the phenomenon is
always described by the equations of continuous media. On its deterministic variant it considers a fixed
microstructure, for example a periodic array, and it tries to determine whether the behavior of the material
becomes in average similar to that of a homogeneous material at scales larger and larger. The subtle point is
to give a precise meaning to this average behavior: for a problem of steady-state heat conduction one
requires that the temperature fields and also the heat fluxes become closer and closer to those of the
homogeneous material; for elastostatics one requires that the deformation and the strain and stress tensors
become progressively closer to those of the homogeneous material. But now the question is to make precise
the meaning of this closeness. Since we want the macroscopic behavior of the samples of material to be very
similar, we consider macroscopic measurements of the quantities we require to be similar. However a
macroscopic measurement necessarily involves taking some kind of average at a smaller length scale and
this averaging technique has to be sufficiently robust because we will be averaging quantities that tend to
vary very fast, since we will use larger and larger length scales. The answer to this crucial point is the notion
of weak convergence, which came mostly in the past century, from the work of many scientists: mathe-
maticians, physicists and engineers.

Let us now be more precise and recall the mathematical definition of H-convergence of Murat and
Tartar, in the context of steady-state diffusion of heat, see for example Murat and Tartar (1983), and which
is based on weak convergence. Even though we do not use it explicitly in the following work, it will always
be on the background. It is similar to G-convergence, introduced by Spagnolo with a different purpose,
except that H-convergence does not require the tensors involved to be symmetric, which is of no conse-
quence here, since diffusion tensors are always symmetric. Let Q be a regular open subset of R* and {A"} be
a sequence of diffusion tensors. Then we say that A" H-converges to A" if for all f € H~'(Q) we have a
subsequence of {u"} C Hj(Q), solutions to

—div(A"gradu") = f in Q
u" =0 on 0Q,

which satisfies that " — u™ weakly in H} (Q) and A" gradu” — A" grad u™ weakly in L*(Q, R?), where u™ is
the solution to

—div(A* gradu™) = f in Q
u* =0 on 0Q.

The meaning of this somewhat involved definition is that for any heat source f, the behavior of the A”s
becomes more and more similar to that of A" in terms of the weak limits of both: the induced temperature
field «" and the induced heat flux A" grad«”. In the context of finding %y, the A”s are discontinuous diffusion
tensor-fields that take only two values, namely those corresponding to the two materials we are mixing, and
for each microstructure we have a different way in which A" varies in space.

The problem of finding ¥, is sometimes referred to as the Gy-closure problem, as a variation of the G-
closure problem. The question of characterizing %, or variations of it, has been extensively studied in the
last three decades. Some of the classical references are: Tartar (1977, 1985), Murat and Tartar (1983),
Cherkaev and Lurie (1984a), Francfort and Murat (1987) and Milton and Nesi (1999). For a recent account
on the state of the art in this subject (see Allaire, 2002). The situation when both starting materials are
isotropic was completely solved in Murat and Tartar (1983), Tartar (1985), Cherkaev and Lurie (1984a,b).
If one of the starting materials is allowed to be anisotropic, in Nesi (1993) an optimal bound was obtained
for anisotropic composites on the side of the region closer to the isotropic phase, but to show the
attainability of the bound a constraint on 6 has to be imposed. Later in Nesi (1996) an optimal bound was
proved on the other side of the region, but only for isotropic composites. Finally on case II as defined
below, in Milton and Nesi (1999) the full characterization of %, was obtained, still under the same con-
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straint on 6 mentioned before. For case I there is only a corresponding conjecture coming from Astala and
Miettinen (1998). We recall these results in Section 2.

We will have mixtures of two phases: material ¢ with diffusion tensor A is used in volume fraction 0,
0 € (0,1); the other is material » with diffusion tensor B. We divide the study in two cases:

Case I. A = al, B = diag(B,y) and o < By.
Case II. A = diag(x, 8), B =7l and aff < }°.

In Section 3 we make the explicit construction of a region of laminates of rank at most three, denoted by
%y, and show at least in some cases that this region is H-stable, meaning that whenever we homogenize a
mixture of two materials belonging to this region, the resulting effective tensor also belongs to the same
region. This means that despite the simplicity of the microstructures used to generate the tensors in %y,
they can reproduce almost all the possible effective tensors, as it will be numerically shown in the last
section, and it also means that to get an even better approximation, most likely one needs to use a com-
plicated microgeometry. First in Section 3.1 we recall a result from Francfort and Murat (1987), quoted
below as Theorem 3.1, which gives sufficient conditions for a set of tensors to be H-stable. This theorem
requires two main hypothesis, on the one hand that the boundary be C', this is that the boundary is formed
by functions that are differentiable with the derivative being continuous, and on the other hand that the
region be enclosed between a convex and a concave function. We then extend that result to get Proposition
3.4 by relaxing the former hypothesis to cover the case of the explicit construction we present in Section 3.2,
this is of a curve of rank-two laminates almost enclosing a region whose interior and a small piece of its
boundary are obtained by one more lamination. Then in case I and if we further restrict ourselves to the
well-ordered case (see Francfort and Murat, 1987), i.e. we also require that o be less than both f and 7y, we
can prove using Proposition 3.4 that ¥, is H-stable. For the non-well-ordered case we could not do such
general verification, instead we checked numerically that the second derivatives of the bounding functions
do have the right signs, to do it we discretize the values taken by 6 over the whole interval (0, 1), fix o = 1
and y = 5 and discretize f§ over the interval (0.2,5). We present the analogous construction for case II in
Section 3.3 and again checked numerically the sign of the derivatives, the only difference being that now f
will be discretized over the interval (1,25). Therefore there is very strong evidence that %, is always
H-stable.

Finally in Section 4 and for the same discretizations mentioned above, we compute the difference be-
tween the optimal bound and the conductivity of the closest isotropic conductor belonging to %y, on the
side of the region closer to the anisotropic phase. Restricting the ratio between the conductivities of the
anisotropic phase to be at most 25, we obtain that rank-three laminates will yield a composite with an
effective conductivity very close to the optimal value, the maximum difference being of about 2%, gain
which most probably will be offset by the cost of having to use a much more complicated assembling
procedure. On the other side of the region there is no gap if the volume constraint imposed by either
Theorem 2.1 or 2.2 is met.

Throughout the paper we denote by e; the ith canonical vector and say that the lamination is in the
direction of { € R?, { # 0, if the interfaces between the laminates are perpendicular to (.

2. Optimal bounds

Here we recall the known optimal bounds and one conjecture for it. First we present the results using
quasiconformal mappings obtained in Astala and Miettinen (1998) and Milton and Nesi (1999), which to
show the attainability of the bounds, uses a microstructure following the construction of Hashin-Shtrikman
and Schulgasser, since it involves constructing disks of different sizes that always have one eigenvector of
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the anisotropic phase pointing towards the center of the disk. The other optimal bound, to be recalled
secondly, comes from a simple rank-two laminate and was obtained in Nesi (1993).

Following Nesi (1993) let us define the following quantities, which give the values of the two conduc-
tivities of a rank-one laminate between the phases in the prescribed volume fractions for each of the cases.
In case I if the laminate is in the e; direction

-1
n(0) = (2+1;0> and a5(0) = O+ (1 —0)y,

and if the laminate is in the e, direction

-1
h;(e):(ngl;H) and a'(0) = 0x+ (1 — 0)B.

In case II if the laminate is in the e; direction

1 6 170 B 11
o) = (+—— and  a(0) = 0B+ (1 — 0)y,

o

and for the e, direction

I 0 1-06\"' I
hy(0)=|5+—— and a; (0) = 0o+ (1 — 0)y.
By

In case I %, is not known, instead we have a region %, enclosed by two curves, one presented in (2.2) is
only conjectured to be a bound while the other, coming from (2.3), is a bound which is fully attained
provided that a} > A}, which imposes a lower bound for 6.

In case II %, is enclosed by two curves, one presented in (2.1) and the other coming from (2.4), which
is fully attained under the assumption that aj' > A}, which now translates into an upper bound for 6.

2.1. Using quasiconformal mappings

Nesi (1996) introduced the idea of using quasiconformal mappings and obtained optimal bounds, either
from above or from below, depending on the case, but only for isotropic composites belonging to 4,. Case I
is covered by Theorem 5.3 in Nesi (1996), while case II is covered by Theorem 5.2 in that paper. Then in
Astala and Miettinen (1998), the authors conjectured optimal bounds working on the side of %, closer to
the anisotropic phase, one for each of the situations studied by Nesi. Lately in Milton and Nesi (1999) the
conjecture of Astala and Miettinen covering case II was proved, which we now recall. From (4.1) and (4.2)
in Milton and Nesi (1999) written in our notation, let be:

dlz\/ﬁv K_\/éa A_dl_y

Cdi+y

and

2d,
1 + 4K

where ¢ represents the volume fraction of material 5. The material with diffusion tensor S(#)/ is obtained by
filling the domain with disks of varying sizes and which are constructed following the Hashin-Shtrikman—
Schulgasser idea, namely with a core of the isotropic phase and an annulus of the anisotropic phase with the
less conducting direction always pointing to the center of the disk. S(1 — 0) gives an optimal lower bound
for the conductivity of the isotropic materials belonging to %, (see Theorem 4.2 in Milton and Nesi, 1999).

S(t) = —d, + vt € [0,1],
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Then using an isotropic material constructed in this way and relaminating it with the anisotropic phase,
in the direction of ej, they got (see Proposition 5.2 in Milton and Nesi, 1999) an optimal lower bound given
by the curve of materials with conductivities

-
Ay = (Sélz)-i-l aél> and = S(&) + (1= &), (2.1)
where &,&, € [0,1] and &, &, =1— 0.

The other conjecture of Astala and Miettinen has not been proved, to the best of our knowledge. The
curve coming from this conjecture together with the curve coming from the optimal bound proved in
Theorem 2.1, enclosed a region that we denote by ¥4,. From formula (5.4) in Astala and Miettinen (1998),
written in our notation, we set:

_ T
o=vhro k=g A=
and
2 1\

where ¢ represents now the volume fraction of material a. Then, repeating the process as before, one gets a
curve of materials with conductivities

NEEREAS ) )
jL1_<S(§2)+ B ) and = S(&) + (1= &)y, (2.2)

where &, &, € [0,1] and &,&, = 0, which would give the optimal upper bound.
2.2. Optimal rank-two laminates

In Nesi (1993), among many other results, two optimal bounds were proved concerning the Gy-closure of
any pair of materials, one isotropic and the other anisotropic, in any dimension greater than or equal to two
(see Section 7.3 in Nesi, 1993).

Theorem 2.1. Let o, B,y € RT be such that o> < By and 0 € (0,1). Let then be material a with diffusion tensor
A = ol and material b with diffusion tensor B = diag(f,y). Then if 1, and A, are the main conductivities of
a homogeneous material created by mixing material a in proportion 0 and material b or rotations of it in
proportion 1 — 0, we have that

o o S 1 o o
< = 0 , 2.
o s S1os 1—9( +[3—oc+y—oc) (23)

where
o +7) — 202
By — o
Furthermore the bound (2.3) is attained by rank-two laminates and under the assumption that a > h, which

means that 0 € [0} 1), where

min’

S =0+ (1-0)
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the whole curve in the box [h},ab] x [h},a}] on the (11, 72)-plane given by equality in (2.3) is realized by rank-
two laminates.

Theorem 2.2. Let o, B,y € RT be such that off < 7y* and 0 € (0,1). Let then be material a with diffusion tensor
A = diag(a, f) and material b with diffusion tensor B = yl. Then if 1, and A, are the main conductivities of
a homogeneous material created by mixing material a or rotations of it in proportion 6 and material b in
proportion 1 — 0, we have that

A A S, 1( o B >
+ < S L R . 2.4
Sy P R o\ T T g 24)

where now

(2 + B) — 20p

Furthermore the bound (2.4) is attained by rank-two laminates and under the assumption that ai' > hY}, which
means that 0 € (0,0 ], where

? Y max

o y(B— )

(=) - B
the whole curve in the box [hl!, ] x [W', al] on the (1., 2,)-plane given by equality in (2.4) is realized by rank-
two laminates.

+1-0.

In both cases the optimal microstructure is produced through an iterated lamination with the isotropic
phase, first one laminates the anisotropic material with the isotropic phase in the direction of ¢; and then
laminates the outcome of this with the isotropic phase, but now in the direction of e,. We have recently
found and alternative proof of these bounds, using only the Homogenization method as presented in Tartar
(2000) (see Gutiérrez, in press).

3. H-stability

As we said in the Introduction, in Francfort and Murat (1987) was defined the concept of H-stability. In
that article this idea was used to fully characterize the set of all possible mixtures of two anisotropic
materials, but without fixing the proportions. We would like to use this idea to show that a region we can
create by doing only laminates of rank at most three, is H-stable. We only succeeded in case I under the
extra assumption that the tensors are well-ordered, which implies that o < f <v. For the other situations,
we only verified the conditions numerically.

3.1. A characterization of H-stable regions
The following theorem was proved in Francfort and Murat (1987) and gives sufficient conditions to
make a set of tensors to be H-stable. One of the conditions of the theorem is too strong and it will not be

satisfied by our region, however it will not be hard to make the appropriate extension.

Theorem 3.1. Let 6, and 6, be strictly positive real numbers such that

2
o5 <1 <y < g
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Let ¢ and \y be two real-valued functions defined on 91, 8,] with the following properties:

@ and \ are C' functions with values in R’,,
¢ is concave,
Y is convex,

o(d)W(d) =d for any d € |01, 0,].

Define K(01,0, ¢,¥) as the set of all (A,7) € [oco,ﬁo]2 such that 01 <Ay <y and Y(Aiy) <4y,
A2 < @(2172). Then the set of diffusion tensors that have their eigenvalues belonging to K (01,02, @,{r), denoted
by M (K (61,07, p,V)), is H-stable.

For the region K we construct, one part of its boundary comes from the optimal bound derived either in
Theorem 2.1 or 2.2. The other part comes from an explicit rank-two lamination. The problem we run into is
that the corresponding functions ¢ and y will not be differentiable at the point where both parts of the
boundary meet, therefore we want to relax the C! requirement in Theorem 3.1, which is heavily used in its
proof. To do it we use the following two lemmas:

Lemma 3.2. The increasing union of sets which are H-stable is H-stable.

Proof. If Ay and By belong to the union, then both belong to one of the sets in the union, so all the tensors
produced by homogenizing mixtures using only those tensors also belong to that set and therefore to the
union. [

Lemma 3.3. Let K C R’ be a bounded set on the (d, 1)-plane, such that ./ (K) is H-stable, then if K denotes
the closure of K, the set .4 (K) is also H-stable.

Proof. If .Z (K) were not H-stable, there must exist Ay, By € .#(K), whose representation on the (d, 2)-plane
are, respectively, k and w, with k, w € K, and such that we can homogenize a mixture of them to get a tensor
Cy & /4 (K). Then calling k* the representation of Cy on (d, 1), we have that k* € K.

There are then two sequences of tensors in .#(K) whose representations on the (d, 1)-plane, {k,} and
{wn}, belong to K and which converge in the norm of R? to k and w, respectively. Let then {C,} be the
sequence of tensors mixing Ay and B, and H-converging to Cy. Now for each m, using the same micro-
geometry and rotations of the tensors, we can construct another mixture using now tensors represented by
k, and w,,, to create a sequence of tensors {B”'}, which due to sequential compactness of H-convergence,
must have a subsequence which H-converges, let us say to By represented by £/,.

Now, for any ¢ > 0 we can choose m large enough to make |B! — C,| < ¢ pointwise and uniformly on #.
But Proposition 16 of Tartar (2000) gives then that |B; — Co| is bounded by a constant times ¢, which in
turn implies that the distance between k* and k), should also be bounded by a constant times ¢. Then by
selecting ¢ sufficiently small, we conclude that &/, ¢ K, which contradicts the H-stability of .#(K). O

Proposition 3.4. Let K be as in Theorem 3.1 except that ¢ and \y are continuous, but they may not be dif-
ferentiable at a finite number of points in (01, 9,), where they have only directional derivatives and their one-
sided derivatives at 0, and 0, might not be finite. Then we still have that #(K) is H-stable.

Proof. The fourth condition on ¢ and y in Theorem 3.1 implies that the points where the functions are not
smooth are common. Let then 7' = {d; € (6,,5;) : i = 1,...,m} be that set of points, then for ¢ positive but
sufficiently small, we construct a sequence of sets K, by doing two things: first we regularize ¢ and ¥ on all
the intervals (d; — ¢,d; + ¢), so to make them C!, and secondly, we also need to restrict d € [0; + ¢, 62 — &,
since both ¢ and y may not be differentiable at the end points. Then now the sets K, satisfy all the
hypothesis of Theorem 3.1.
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Hence, using Theorem 3.1, we have that all the sets .#(K,) are H-stable, and K, C K, then applying
Lemma 3.2 we get that

K' =K\ <{<di7(p(di))’ (i, Y(d)) =i =1,...,m} UU(&- X [lﬁ(&)a(l’(@)]))

makes .#(K') to be H-stable and then using Lemma 3.3, we conclude that K is such that .#(K) is
H-stable. 0

3.2. Case I

We assume then that A = o/, B = diag(B, y) with &> < By. The set K will be formed by the union of two
parts: one is obtained from the optimal lower bound (2.3), while the other will come from a precise con-
struction detailed below. Then the first part is given by

2=, (d) : <2°‘2 +(d — “Z)Sl - \/(20(2 + (d — 0‘2)51)2 - 4doc2>

o

and

A< @(d) = % (20(2 +(d — )8 + \/(20(2 +(d — 2)8)* — 4a’oc2>7

with d belonging to the closed interval

I = [(Sﬁl(z—so)z,h{w)a;(e)].

Then on the (d, A)-plane the region is
Ky =1{(d,2) € R such thatd € I, and y,(d) <i<o,(d)}.
First it is clear that ¢, and , are of class C' and that ¢,(d)y,(d) = d. Calling

Ar(d) = 242 + (d — o2)S))* — 4do’
we see that

1 24rdr" — (4F)  —2a3(S; — 1)
! d = —\/A}" = = < O
¢1(d) 20 805(Ar)3/2 (141;’)3/2

Then ¢} (d) < 0, so ¢, is concave and y, is convex. One should notice that this curve is fully attained by
rank-two laminates, more specifically they come from an iterated lamination with the isotropic phase, only
if the restriction 6 > 6! is met. If that restriction is not satisfied we close the region on the side of the bad
conductors by doing one more lamination of the material on the curve with the least determinant with its
rotation by m/2, and then we will have only part of the interval /;, but still the same functions of the
determinant, so the respective convexity and concavity will still hold.

The second part of K will come from the following construction: we first laminate A with B in the
direction e¢; and using A in proportion # and B in proportion 1 — 5, to produce an intermediate diffusion
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tensor denoted by M, and then laminate, in the direction of e, this tensor with the rotation of B by /2,
which we denote by B, in proportions 0/5 and 1 — 0/n, respectively, with # € [0, 1]. Then

M= W) ag?m]

and then

ghll(n)+ <1—Q)V 0
0 npay(n)
0B + (n — 0)as(n)

We turn now to show that the corresponding functions ¢, and ¥, are concave and convex, respectively,
verification that will use that « is less than both f and 7, i.e. that the tensors are well-ordered. We will show
that there is a value 5, € (0, 1) where the determinant of M, is maximized and then only the interval [#,, 1]
will be used to define #y. To close the region on the side of the good conductors we laminate M,(#,) with
its rotation by 7/2. If the tensors are badly-ordered we did not get an analytical proof that the hypothesis of
Proposition 3.4 are met, instead we computed a simple numerical approximation of the corresponding
second derivatives, and verified that they always have the right sign for 6 € (0,1), «a=1, y=5 and
pe(02,5).

Let us first define the following auxiliary functions of : 4(n) = o+ n(f —a) and C(n) =7 —n(y — o),
then we can write that the eigenvalue of M, associated to e, is given by

h = a(n) = niA«n 04 + 0ap)

and analogously
npc

T 0+ (n—0)C’
both for n € [0, 1]. Then

0
:W

o = g(n)

gi(n) (2(7 — B) + 20m(B — o) (y — B) +y* (B — 2)*),

which is strictly positive, due to the well-ordering assumption,

—20

gi(n) = e (@ (= B) +32n(B— o) (y — B) + 3an*(B— @)’ (y — B) + yr* (B — 2)°),

which is strictly negative, again due to the well-order assumption, and
op 2 2
(=0 =B +20 =B —2) =" —=)),
0B+ (n— 0)C)*

which is also strictly negative for € [0, 1].
Let us now call g3() = g1(n)g2(n), we then have that d = 4,4, = g3(17) and one can show that

gs(n) = 0> (By — az)%,

g(n) =

where

P(n) = 0u(y = B) + P (7(B — ) —aly — ) + 0B — ) (y — @) = 20° (B — o) (y — )
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and

O(n) = A2(0B + (n— 0)C)*,

which is strictly positive for all 4 € (0,1).
Now we see that P has two critical points, one at zero and the other one at

1 P(B—o) —aly —a)
’“‘3(9* F-D0 ) )

Also we can see that P has only one positive real root, which we denote by #,, and that lies in the interval
[0, 1] since

P(0) = 0(1 = 0)(a(y = B)(1 +0) + 0*(y — 2)(B — 2)) > 0

and
P(1) = —(1 = 0)(By + &> = 2ap) < 0.

Looking at the three cases: #;, < 0, n, = 0 or ; > 0, we conclude that in all of them and once more using
the well ordering of the original diffusion tensors, we will have that g4(y) < 0 for n € (,, 1] making then g3
a bijection between [i7y, 1] and [g3(1), g3(1,)]-

Additionally, since
" Hﬁz(ﬁy - (xz)
g () = T
and P'(n,) < 0, we have that g7(1,) < 0 and we will show that (P’Q — PQ’)’ < 0 for all € (1,, 1), which
then will imply that g§(n) < 0 for all € (519, 1), inequality that will be used later on,

, " . P// /!
(PO-PQ) =P'Q—PQ" <0+ F>%’

(P'O—PQ),

but P’() < 0 for n € (ny,1) and
Q'(n) =20(B—o) —a(y =) + 0(B — o) (» — &) — 6n(B — o) (v — ),

which is negative for any > n,. But one can see that always 1, < 5,, then we have for 5 € (y,, 1) that
0"(n) < 0 and then for n € (5, 1) we get that

Now on the interval (17, 1) g3 is a one-to-one C' function and then, by the inverse function theorem, g;'
is also C', therefore we have that n = g;'(d), hence we now define

h=,(d) =g(g5'(d) and 4 =, (d) = g:(g5'(d)).
Then

oh(d) = g (g5 (@) =

&(g5'(d)’

and then, since g}, g, are never zero, we can define

@) == | (2465 ) oet| @

1
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analogously we also define

1 &2 —1
(@)= = |+ 65 ) 0| @
¥, (d) ‘g }
Now, in the context of Theorem 3.1, we set §; = A} (0)a}(0) = g3(1) and 6, = g3(y,). Then the first and
fourth conditions of the Theorem easily hold and we only need to check the second and third conditions.
But
95 (d) <0< h{(d) >0 = <g3> <0 <= g—f>g—},

g g &

which holds since the quantity on the left is positive and the quantity on the right is negative. Then ¢, is
concave.
Now

/ /)

Wi(d) > 0 <= K\ (d) < 0 < (g—3> >0 gl + 25152 L8152

&5 &2 &

But if at some point 1, € (75, 1) the condition on the right would not hold, then at that point we would have
that

g o &
//2—2// X 520
818 + 281828, £1&
but on the other hand from gj(y,) < 0 we conclude, also at 7, that
g -1
PPN PP
818, +2818:8, &i&
then combining these two inequalities, we would have that at 1,
gg (112) > 07
which is impossible and then /, is convex. Then we have that
Ky ={(d,2) € R :d & [hy(0)ay(0), g3(1)] and y,(d) <A< py(d)}

and then we conclude that K = K| UK, gives ¥y = .#(K) being H-stable, which is accomplished using
Proposition 3.4.

3.3. Case Il
Just like in case I, the part of the region coming from the optimal bound using rank-two laminates puts a

restriction on 0, but it does not offer any difficulty on the verification of the hypothesis of Proposition 3.4,
since it is obtained from the optimal upper bound (2.4) and is given by

Az Ys(d) = 21 <V252 +d2-85) — \/(y2S2 +d(2-8)) — 4d“/2>

2y

and

1
}é §D3(d) = Z_y (“/ZSZ + d(2 — Sz) + \/(')/252 + d(2 — Sg))z — 4d'})2>,
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with d belonging to the closed interval

I = lh{l(())ag(()), ( zy—&szﬂ'

Then on the (d, A)-plane we call the region
Ly ={(d,2) € R% such that d € I, and y,(d) <A< p5(d)}.

The attainability of this bounding curve uses the restriction that <0\ , but like in case I if that

restriction is not satisfied, we will have only part of the interval I, but still the same functions, so the
respective convexity and concavity will still hold.

We now show the way in which the second part of L is obtained: we first laminate A with B in the
direction e¢; and using A in proportion # and B in proportion 1 — 5, to produce an intermediate diffusion
tensor denoted N, and then we make a laminate of this tensor with the rotation of A by n/2, which
we denote by A, in the direction of e; and in proportions H and ?%Z, respectively, with # € (0,0). Then

_ (M) 0
Ni= { 0 a?(ﬂ)]
and
Tl ) 0
Nl = (1 = n)aal(n)

0
(1= 0)o+ (0 —n)a3'(n)

For this part of the boundary curve, like in the case I badly-ordered, we did not get an analytical proof
that it satisfies the hypothesis of Proposition 3.4, so we also turned to a numerical verification, to check that
the relevant second derivatives always have the right sign, which did happen for 6 € (0,1),x =1,y = 5 and
p e (1,25).

4. Comparing %,, or @9, with £

When the restriction on the volume fraction imposed by Theorem 2.1 or 2.2, either 0 > 0!, in case I or
0< 0" in case I1, is not satisfied, the corresponding bound is most likely non-optimal because, for example
in case I taking 0 =~ 0 and f =~ o, we will have S| =~ 1 and then the right hand side of (2.3) goes to infinity,
which will then force an isotropic material saturating the bound, to have conductivity very close to o, which
seems not to be attainable since we will be mixing a very low proportion of the isotropic material o/ with a
very high proportion of a material like diag(«,y). Besides the worst isotropic conductor in .#, will have
conductivity close to /&y and then the relative difference between this and the isotropic material sitting

on the bounding curve should be like

Vi Ve

\/& )
which can be made as big as desired, by playing with o or y. Therefore on the side of the region close to the
isotropic phase we either have no gap between % and either %, or 4, if the constraint on 6 holds, or in the
opposite case, the gap between them can be very big, most likely due to the non-optimality of the bound.
Therefore to compare the two regions we focus only on the gap on the side of the region closer to the
anisotropic phase. For case I in Fig. 1 we fix « = 1 and y = 5 and make a fine discretization of § and f§ and
draw the contour plot of the function of these two variables given by the percentage of the conductivity of
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Fig. 1. Case . « =1 and y = 5.
20
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Fig. 2. Case Il: « =1 and y = 5.

the best isotropic conductor in Gy, represented by the difference between that conductivity and the con-
ductivity of the best isotropic conductor in #4. For the quantity mentioned before the last, one has an
explicit formula, but for the last one we do not have an explicit formula. The maximum value in this graph
is of 2.07%, which is attained for 6 = 0.23 and f = 1.69.

For case II in Fig. 2 we present the analogous plot. The maximum value in this graph is of 2.11%, which
is attained for 8 = 0.75 and f = 3.16.

In both cases we see that the gap is quite small for most combinations of 0 and f, the gap being of about
2% only for something like 5% of such combinations.
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